
 

knots and minimal surfaces
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What is a knot

Take a piece of string twist it around
itself and then seal the ends
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Two knots are isotopic if you can

wiggle one without breaking the string
until it becomes the other
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The string can stretch or shrink in length
but never snap

Knot theory is the study of knots up to
isotopy

It's a branch at TOPOLOGY

The simplest knot is called the unknot



Here's some more

TREFOIL FIGURE 8

Intuitively we can tell these knots are
different i.e not isotopic

But how can we prove it

And what about this knot



How can we tell knots apart

Rigorous definitions
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A knot is the image of an embedding
f s Be

Embedding means

f is smooth i the map
Ots f eid is smooth IRR

2 If f p fig then p g

3 dog fled is never zero

Suppose ko ka are two knots the images
at embeddings fo f S IR

ko and k are isotopic if there
is a map
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such that

1 Flo p f p her all p f s
and F lip f p her all pest

2 It d t Flt eid is a smooth

map COMXIR 1123

3 how each t the map ft stir

given by
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is an embedding
of
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The drawings we have been using at
knots an closed patties on the plane
with crossings are called projections

Clearly one knot has many projections

Reidermeister moves

Given a projection here are three
simple mover we can make which don't

change the knot Cire up to isotopy
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Ra Ra R are the three Reidermeister
moves

Reidermeister's Theorem

Two projections represent isotopic knots
if and only it they are joined
by a series of Reidermeister moves

In practice its very hard work
to prove

knots are isotopic this way and nearly
impossible to show knot are distinct

Instead we can use this as hollows

Suppose we have a certain property of
knot projections which is left unchanged
by the Reidermeister moves Then we can

use it to tell knots apart



Tricolourability

Pick three colours RED GREEN BLUE

We use them to colour strands of a
knot projection

A strand is an unbroken are running
between two undercrossings

A tricolouring is a colouring with three
colours her which at each crossing
either all three colour appear or only one
colour appears

If the projection has a tricolouring
then it is called tricolourable

The standard projection
at the trefoil is

tricolourable
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projection at theGin

also tricolourable

Theorem

It one projection at a knot R tricolourable
then they all are

Sketch of proof

We must check that tricolourability is
preserved by the Reidermeister moves

Ri
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R two cases



Hid

R several cases left as an exercise

her the reader

A knot is called tricolourable it all
its projections are

The trefoil r ticolourable

The unknot is not tricolourable

So they are not isotopic

The figure 8 knot

Not
tricolourable



So figure 8 and trefoil are different

but how can we prove that the
figure 8 is not the unknot

The Alexander polynomial

Discovered in 1928 by Alexander

Revitalised M 1969 by Conway

We need to use links

A link is a disjoint union at knots

the 2 component
unlink

the Hopf link



The Bonomean rings
Chom 1300s crest
at the Borromeo

family

We also need to orient our links

An oriented Hopf
n n v r link

It a link has c components it has
2 orientations

Theorem

The following two miles uniquely determine
a polynomial Afa her each isotopy
dam at link L

1 It U is the unknot then Aula 1

2 Let Lt L and to be three links
which are related by changing a single
crossing as indicated
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Lt L Lo

Then Ay AL Z AL

SKEIN RELATION

Examples

1 The 2 component unlink U H U

We start with a diagram of the unknot

as

ACA ALA zA OF
Lt L Lo

unknot unknot 2 coup
unlink

Au Au Z Anau
u Aunt O



So Alexander polynomial at 2 comp unlink
vanishes

2 The trefoil

L L Lo

Trefoil T unknot U Hopf link H

So At I ZAM

ED

Lt L Lo

H 2 comp U
unlink



So An 2An Z and

At It 2An 1 z

This is another proof that the trefoil r
not isotopic to the unknot

3 The figure 8

EDIE

Lt U th
unknot Hope but

NOT the same
orientation as
behave



itH L U Lo

so Ap Ay ZAL
Z

A
gig g Aut Z App
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So we have shown that the figure 8
I not isotopic to the unknot

The HOMFLYPTpolynomial

Named after the discoverers in 1980s

Hoste Ocneau Millett
Froyd hickorish Yetter

Przytychi Traczyk



Theorem The two rules below uniquely
determine a 2 variable polynomial
associated to each isotopy dam of
oriented link

1 Pylant 1

2 AP Lt a PL Z PL

P is called the HOMELY PT polynomial
of L

Its a Laurent polynomial

Notice that it you set a 1 you
recover the Alexander polynomial

Paiz Ada

Exercise compute the Homfiept for the
trefoil and the figure 8

There are other link polynomials
the Jones polynomial the Kauffman

polynomial and you Cand ID should



learn about all of them

what is a minimal surface

Let S E 1123 be a smooth surface

S is called minimal it for every
compactly supported perturbation St of
S we have

da AreaCst o

4 0

Here a compactly supported perturbation St
means St is a path at surfaces for
te C e e satisfying

So S

There is a compact set C E LR st
for all t SIC SIC

Sn
Salz

in
S r



Let 3 all surfaces in 1123

Area defines a function 5 7 Co o

A minimal surface is a critical point
at this function

Warning surfaces can have infinite
area leg the plane 112221123

so the above story has to be carefully
interpreted

We can define minimal by only
computing the area at Sen C
where Sel C SLC and C is

compact

Minimal surfaces are an important
meeting point of geometry and
analysis

Suppose f U IR is smooth

S x y fex.gl I G g E U



The graph of f

S is minimal if and only if f solves
a difficult partial differential equation

dir Eff o

This equation is non linear second order

To hid solutions you need geometry
AND analysis

One easy solution take a curve

in the Cy27 plane and rotate to get
a surface at revolution s

Asking her S to be minimal gives an

ODE for your curve with an easy
solution Z costly

The surface of revolution is called the
catenoid
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Minimal surfaces in It is a subject
with a long history and is still right at
the forefront at research today

We need something a little more exotic
however

What a hyperbolic space

Use coordinates Xn Xun y on the
hall space thin Cxg E R Ly 0

If we have a curve y a b He

we can define the Euclidean length by

Lancer fab 18 cell at



We delve the hyperbolic lengthby

hyp 8 Sab Fa lo't at

where yet n the y card at Olt

This has the effect of magnifying the
lengths at curves where y is small

Eg 8 Ct t O 0,57 her tf on
and S f Co es

typ o I

5 1 length

S I
4

lush

Another example Nlt Lo no t hor
te le e

hyper f Idt log
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So even though the curve has length l e

Euclidean terms in hyperbolic terms
it has length tending to is an o

Moral the boundary y o n infinitely
her away

Moral space explodes as you get closer
and closer to the boundary

Geodesics

In Euclidean space straight lines minimise
the distance between points

In hyperbolic geometry this role is played

by the geodesics



A geodesic is a semi circle in 1H
whose centre lies on the boundary y 0

We include vertical rays as demi circles
of infinite radius

This is the start of non Euclidean geometry
and Riemannian geometry

There a brandies of differential geometry
which are right at the forefront of
current research both in mathematics
and theoretical physics

We will be interested in minimal surfaces
in H

When computing the area at a surface in 1124



we use a double integral In hyperbolic

geometry we weight the integral by tyz

Then the same definition makes sense
S is minimal if her every compactly
supported perturbation St

Area
hyp
St Io 0

Examples take a hemisphere in Al
centred on the boundary y 0 This

gives a minimal surface

A minimal surface in 1H runs out to
infinity where it meets 1123

y o at

right angles in a knot or a link



The main conjecture

1 Given a link Le 1123
you can

count the minimal surfaces in 1114
which meet the boundary in L

2 This count is an invariant I e
it doesn't change as you carry out
on isotopy of L

3 These invariants can be put together
to give a known link polynomial

Finding minimal surfaces is very hard

you have to solve a non linear PDE

Computing knot polynomials horn diagrams
is relatively easy we've already done
a few

So an easy calculation in knot
theory would imply the existence
of minimal surfaces



This conjecture is in the style of a
large body of modern mathematics
20th 21st century connecting
topology geometry and analysis

Ideas go back to Stephen Smale in 60s
and then a true revolution started
by Simon Donaldson m 80s

Moral counting solutions to geometric
PDEs can tell you a lot at

things about topology and
vice versa

Overall idea take a technique from

topology apply it to the space of solutions
to a geometric PDE the conclusion
will hopefully be something significant
about the space on which the PDE
is defined

The technique I want to use is the

degree at a continuous map f 8 S

The degree counts the number of times



the image of f winds around the circle

f I

deg f 2

We can compute the degree by counting the
number of points in a preimage of a
single point

5
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P Pa P Py Ps

f ppl single point

f p three points



But f p has points where f goes
in DIFFERENT directions

at

o o It
o o o o at a

P 9h P P 92 Py 93 P

The count WITH SIGNS taking into account
the direction of f is the same bar
all of f p f P2 f Ps

However there is a problem with the red

points q q etc

E.g f q two points and
one of them doesn't have a sign

The problem is that df vanishes at
this point ie its a critical point off

Moral degree at f is signed count
of points in f p as long as

there are no critical point there



For generic p this is always the

case

Important consequence it Pr Pr
are generic then the number at
points in f pr and in f Cpa
counted with sign IS THE SAME

Back to minimal surfaces in 1114

filling knots or links

let It be space at all minimal
surfaces in 1114

Let L be space at all links in 1123

Given a minimal surface S its

boundary 25 is a link i we have
a map

s U L

S t 25



To count the minimal surfaces which

fill a link L E L we want to
count number of points in 2 L

We want to define the degree of 2

s
ft

u

L

generic links
in same isotopy
class

In this picture deg 2 1

What has to be done to make this
work



1 Want to talk about critical points
at 2 U L

So we need Il and L to have
structure where we can talk about
smooth maps

Theorem ill and L are Banach
manifolds infinite dimensional

Also need 2 to be a nice smooth

map

Theorem J is Fredholm at degree 0

Need to be able to define signs
at points m 2 p

Theorem This can be done

This is still not enough though

Suppose I is generic How do we
know 8 L is finite



and Rotopic
Suppose to L are generic I How do
we know 2 lo and 2 Ln have
some number of points

Want to prove properness

Su Ell an infinite sequence
at minimal surfaces

Lu Jsu their boundaries

Suppose Lu L

want to prove Ca subsequence of the
Sn converge to a minimal surface
S with OS L

Eg want to avoid this

C u

LE Ii
dem



lulu
lun Su doesn't exist

Until now we haven't talked about
the topology of our minimal surfaces

Now it becomes important

an unknot

É

minimal surface
of genus 1 billing

a trefoil

Genus is number at holes

i
E
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Theorem let Mo be the space at
minimal disks genus 0

The boundary map 2 No L
is proper

This means that we have a well
defined knot invariant

NCW minimal disks m HY
with boundary K

counted at sign
and k generic
in isotopy class

Big question Is there a known knot
invariant eg a coefficient
in a knot polynomial

And her higher genus or more boundary
components

Problem 2 is not proper



Beautiful example at this due to
Tien Nguyen

There is a path at minimal annuli
which bill Hopf links

O
I

So as Ho Su Zsa Mu Mi H
Su S

The limiting minimal surface is

SINGULAR

It has a different topology

If we want to count minimal annuli
we need to deal with this phenomenon



And a skein relation

Need to understand what happens to
the minimal surfaces when the boundary
develops a crossing

E I


