Knots and minimal surfaces
BSSM 2022
What is a knot?
Take a piece of sting, twist it around Itself and then seal the ends:


Two knots are isotopic if you can wiggle one without breaking the string until it becomes the other:



The string can stretch or shrink in length but never snap.

Knot teeny is the study of knots up to isotopy.

It's a branch of TOPOLOGY

The simplest knot is called the unknot:


Here's some move:


TREFOIL

faure 8.

Intuitively we can tell these knots are dibberent, i.e. not isotopic.

But how can we prove it?
And what about this knot?


How can we tell knots apart?
Rigourous definitions

$$
\begin{aligned}
S^{1} & =\left\{(x, y) \in \mathbb{R}^{2} \mid x^{2}+y^{2}=1\right\} . \\
& =\left\{e^{i \theta} \in \mathbb{C} \quad \mid \theta \in \mathbb{R}\right.
\end{aligned}
$$

A knot is the image of an embedding $f: S^{1} \rightarrow \mathbb{R}^{3}$

Embedding means:
(1) $f$ is smooth. ie the map $\theta \mapsto f\left(e^{i \theta}\right)$ is smooth $\mathbb{R} \rightarrow \mathbb{R}^{3}$
(2) If $f(p)=f(q)$ then $p=q$
(3) $\frac{d}{d \theta} f\left(e^{i \theta}\right)$ is never zero.

Suppose $K_{0}, K_{1}$ are two $k_{n o t}$, the images of embeddings $f_{0}, f_{1}: S^{1} \rightarrow \mathbb{R}^{3}$
$K_{0}$ and $K_{1}$ are isotopic it there is a map

$$
F:[0,1] \times S^{1} \rightarrow \mathbb{R}^{3}
$$

such that

1) $F(0, p)=f_{0}(p)$ Lar all $p \in S^{1}$ and $F(1, p)=f_{1}(p)$ bor all $p \in S^{1}$
2) $(t, \theta) \mapsto F\left(t, e^{i \theta}\right){ }_{B^{3}}^{\text {is }}$ a smooth $\operatorname{map}[0,1] \times \mathbb{R} \rightarrow \mathbb{R}^{3}$
3) hov each $t$ the map $f_{t}: s^{1} \rightarrow \mathbb{R}^{3}$ given by

$$
f_{t}(p)=F(t, p)
$$

is an embedding.


The drawings we have been using at knots, as closed paths on the plane with crossings, are called projections.
dearly, one knot has many projections
Reidermeister maven

Given a projection, here are three simple moves we can make which don't change the knot (ie. up to isotopy).

$R_{3}$

$R_{1}, R_{2}, R_{3}$ are the three Reidermenter moves

Reidermeister's Theorem
Two projections represent isotopic knots if and only it they are joined by a series of Reidermeister moves

In practice its very hard work to prove knots are isotopic this way, and nearly impossible to show knots are distinct.

Instead we can use this as hollows.
Suppose we have a certain property of knot projections which is left unchanged by the Reidermeister moves. Then we can use it to tell knots apart !

Tricolourability
Pick three colours RED GREEN BLLE We use them to colour shans of a knot projection

A strand is an unbroken arc numbing between two undecrossings

A tricolonring B a colouring with three colours bor which at each crossing either all three colours appear, or sully one colour appears.

If the projection has a ticolouring then it IP called tricolourable.


The 'standard' projection at the trefoil is ticolourable


Another len standard projection of the trefoil which is also ticoldurable.

Theorem
If one projection of a knot is ticolourable then they all are.

Sketch of proof.
We must check that ticolourability o preserved by tho Reidermeister moves.
$R_{1}:$

$R_{2}$ two cases

or

$R_{3}$ several cases, left as an exercise for the reader!

A knot is called ticolourable it all its projections are

The trefoil a ticolounable
The unknot is not tricolourable
So they are not isotopic!

The figure 8 knot:


Not tricolourable!

So, figure 8 and Trefoil are dibberent But how can we prove that the figure 8 s not the unknot?

The Alexander polynomial
Discovered in 1928 by Alexander
Revitalised m 1969 by Conway.
We need to use links

A link is a disjoint union of knots:

the 2-cmponent unlink the Hop link.


The Borromean rings (from 1300s crest at the Borromeo family)

We also need to orient our links


An oriented Hop link
(If a link has $c$ components it has $2^{c}$ orientations).

Theorem
The hollowing two mules uniquely determine a polynomial $A_{L}(z)$ hov each isotopy dan of link $L$.
(1) If $U$ is the unknot, then $A_{u}(z)=1$.
(2) Let $L_{+}, L_{\text {- }}$ and $L_{0}$ be three links which are related by changing a single crossing as medicated:

$L_{+}$


L_


Lo

Then $\quad A_{L_{+}}-A_{L_{-}}=z A_{L_{0}}$
"SKEIN RELATION"
Examples

1) The 2-component unlink, $U 11 U$

We start with a diagram of the unknot:


$$
\begin{gathered}
A(O)-A(O D)=z A(O 刃) \\
L_{t} \\
\text { unknot } \\
L_{-} \\
\text {unknot }
\end{gathered} \quad \text { Lo }
$$

$$
A_{u}-A_{u}=z A_{u \Perp u}
$$

$$
\text { i. } A_{u \Perp u}=0 .
$$

So Alexander polynomial of 2-camp unlink vanishes!
2) The trefoil

$L_{+}$

$L_{0}$
Trefoil $T$ unknot $U$ Hops link $H$

So

$L_{+}$ H


L
2 comp unlink

$U$

So

$$
\begin{aligned}
& A_{H}=z A_{u}=z \text { and } \\
& A_{T}=1+z A_{H}=1+z^{2}
\end{aligned}
$$

This is another proof that the trefoil is not Botopic to the unknot.
3) The figure 8

$L_{t}$

u
unknot


Mops but
NOT the same orientation as behave

$\hat{H}=L_{-}$


$$
L_{t}
$$

$$
\begin{aligned}
A_{\hat{H}} & =A_{L_{+}}-z A_{L_{0}} \\
& =-z
\end{aligned}
$$

$$
\begin{aligned}
A_{\text {fig } 8} & =A_{u}+z A_{\hat{H}} \\
& =1-z^{2}
\end{aligned}
$$

So we have shown that the higure 8 is not isotopir io the unknot?

The HOMFLYPT polynomial
Named after the disconererp in 1980s:
Hoste, Ocneau, Millett, Freyd, Lickovish, Yetter, Preytycki, Traczyk.

Theorem The two rules below uniquely determine a 2 -variable polyusucial associated to each isotopy dan of oriented uk:

1) $\quad P_{4}(a, z)=1$.
2) $a P_{L_{+}}-a^{-1} P_{L_{-}}=z P_{L_{0}}$
$P_{L}$ is called the HOMFLYPT polynomial of $L$.
(Its a Laurent polynomial)
Notice that it you set $a=1$ you recover the Alexander polynomial:

$$
P_{L}(1, z)=A_{L}(z)
$$

Exercise: compute the Homplypt for the trefoil and the figure 8 .

There are other link polynomids: the Jones polynomial, tho Kaultman polynomial,... and you land I!) should

Learn about all of then!

What is a minimal surface?
Let $S \subseteq \mathbb{R}^{3}$ be a smooth surface $S$ is called minimal if for every compactly supported perturbation $S_{t}$ of $S$, we have

$$
\left.\frac{d}{d t} \operatorname{Area}\left(S_{t}\right)\right|_{t=0}=0
$$

Here a "compactly supported perturbation $S_{t}$ " means $S_{t}$ is a path of surfaces for $t \in(-\varepsilon, \varepsilon)$ satisfying:

- $S_{0}=S_{1}$
- There $R$ a compact set $C \subseteq \mathbb{R}^{3}$ ot for all $t, \quad S_{t} \backslash C=S \backslash C$


Let $\mathcal{G}=\left\{\right.$ all surfaces in $\left.\mathbb{R}^{3}\right\}$
Area defines a function $\zeta \xrightarrow{\text { Area }}[0, \infty)$
A minimal surface is a cortical point of this function.

Warning: surfaces can have infinite area (eg the plane $\mathbb{R}^{2} \subseteq \mathbb{R}^{3}$ ) so the above story has to be carefully interpreted.

We can defile "minimal" by only computing the area of $S_{t} \cap C$ where $S_{t} \backslash C=S \backslash C$, and $C$ is compact.

Minimal surfaces are an important meeting point of geometry and analysis.

Suppose $f: U \rightarrow \mathbb{R}$ is smooth $\bigcap_{\text {open }}$
$\mathbb{R}^{2}$

$$
S=\{(x, y, f(x, y)) \mid(x, y) e u\}
$$

The graph of $f$.
$S$ is minimal it and only it $f$ silver a difficult partial differential equation:

$$
\operatorname{div}\left(\frac{\nabla f}{\sqrt{1+|\nabla f|^{2}}}\right)=0
$$

This equation is non-linear, second-ardes.
To hind solutions you need geometry AND analysis.

Que "easy" solution: take a curve in the $(y, z)$ plane and rotate to get a surface of revolution $S$

Asking how $S$ to be minimal gives an ODE for your curve, with an easy solution: $\quad z=\cosh (y)$.

The surface of revolution ? called the catenoid.

$$
z=\cosh (y)
$$



Minimal surfaces in $\mathbb{R}^{3}$ is a subject with a long history and is still right at the devefrent at research today.

We need something a little more exoctic however.

What is hyperbolic space?
Use coordinates $x_{1}, \ldots, x_{u-1}, y$ on the hall-space $\mathbb{M}^{n}=\left\{(x, y) \in \mathbb{R}^{u}\{y>0\}\right.$.

11 we have a carve $\gamma:[a, b] \rightarrow H l^{n}$ we can reline the Euclidean length by

$$
L_{\text {Enc }}(\gamma)=\int_{a}^{b}\left|\gamma^{\prime}(t)\right| d t
$$

We dene the hyperbolic length by:

$$
L_{\text {hyp }}(\gamma)=\int_{a}^{b} \frac{1}{y(t)}\left|\gamma^{\prime}(t)\right| d t
$$

where $y(t)$ in the $y$-cord of $\gamma(t)$.
This has the effect of magnifying the lengths of curves where $y$ os small.

Eg $\gamma(t)=(t, 0, \ldots, 0, s)$ for $t \in[0,1]$ and $S \in(0, \infty)$

$$
L_{\text {hyp }}(\gamma)=\frac{1}{s}
$$



Another example: $\gamma(t)=(0, \ldots, 0, t)$ hor $t \in[\varepsilon, 1]$

$$
L_{\text {hyp }}(\gamma)=\int_{\varepsilon}^{1} \frac{1}{t} d t=\log \frac{1}{\varepsilon}
$$



As $\varepsilon \rightarrow 0, \quad \log \frac{1}{\varepsilon} \rightarrow \infty$
So even though the curve has length 1- 1 Eudidean terms, in hyperbdic terms it has length tending to $\infty$ an $\varepsilon \rightarrow 0$.

Moral: the boundary $y=0$ is infinitely Row away

Moral: space explodes as you get doser and closer to the boundary.

Geodesics

In Eudidean space, straight lines minimise the distance between points.

In hyperbolic geometry this role is played by the geodesics

A geodesic is a semi-cirde is $H^{n}$ whose centre lies on the boundary $y=0$

We include vertical rays as "semi-civeles of infinite radius'.


This s the start of non-Eudidean genestry and Riemamian geandry

These a branden of differential geanetery which are right at the forefront of eurvent researen, both $M$ mathematics and ttereretical physios.

We will be interested in minimal surfaces in $H^{4}$.

When computing the area of a surface in $\mathbb{R}^{4}$
we use a double integral. In hyperbolic geometry we weight the integral by $\frac{1}{y^{2}}$

Then the same definition makes sense: $S$ is minimal it hor every compactly supported perturbation, $S_{t}$,

$$
\left.\frac{d}{d t} \operatorname{Area}_{\text {hyp }}\left(s_{t}\right)\right|_{t=0}=0
$$

Examples: take a hemisphere in $H^{n}$ centred on the boundary $y=0$. This gives a minimal surface:


A minimal sushace in $\mathbb{H}^{+}$runs out to infinity where it meets $\mathbb{R}^{3}=\{y=0\}$ at right angles in a knot or a link.

The main conjecture

1) Given a link $L \subseteq \mathbb{R}^{3}$ you can count the minimal surfaces in $H^{4}$ which meet the boundary in $L$.
2) This count is an INVARIANT. 1.e. it doesn't change as you can out an isotopy of $L$
3) These invariants can be put together to give a known link polynomial.

Finding minimal surbaces is very hard - you have to solve a non-linear PDE.

Computing knot polynomials how diagrams is relatively easy, we've already dove a ben!

So an easy calculation in knot theory would imply, the existence of minimal surfaces!

This conjecture is in the style of a large body of modern mathematics ( $20^{\text {th }} \& 21^{\text {st }}$ century) competing topology, geometry and analysis.

Ideas go back to Stephens fEmale in 60s and then a true revolution started by Simon Donaldson m 80s

Moral: counting solutions to geometric PDEs can tell you a lot at things about topology and vice-vessa!

Overall idea: take a technigus from topology, apply it to the space of solutions to a geometric PDE, the conclusion will hopefully be something significant about the space on which the PDE is defined

The technique $I$ want to use is the degree of a contimous map $f: S^{1} \rightarrow S^{1}$.

The degree counts the number of times
the image of $f$ winds around the circle.
$f:$


$$
\operatorname{deg}(f)=2
$$

We can compute the degree by counting the number of points in a preinage of a single point:

$f^{-1}\left(p_{1}\right)=$ single point
$f^{-1}\left(p_{3}\right)=$ three points

But $f^{-1}\left(p_{3}\right)$ has points where $f$ goes in DIFAERENT directions.


The count WITH SIGNS taking into account the direction of $f$ is the same bor all of $f^{-1}\left(p_{1}\right), f^{-1}\left(p_{2}\right), \ldots, f^{-1}\left(p_{s}\right)$ !

However, there is a problem with the red points $q_{1}, q_{2}$, etc.
E.g. $\quad f^{-1}\left(q_{1}\right)=$ two points and one of them doesn't have a sign

The problem is that $d f$ varnishes at this point ie its a critical point of

Moval degree of $f$ is signed count of points in $f^{-1}(p)$ as long as there are no critical point there.

For "generic" $p$ this is always the case.

Important consequence: if $P_{1}, P_{2}$ are generic then the number of points in $f^{-1}\left(p_{1}\right)$ and in $f^{-1}\left(p_{2}\right)$ (counted with sign) IS THE SAME

Back to minimal surfaces in $H^{4}$ filling knots -or links.

Let $M$ be space of all unininal surfaces in $\mathrm{H}^{4}$

Let $\mathcal{L}$ be space of all links in $\mathbb{R}^{3}$
Given a minimal surface $S$, its boundary $\partial S$ is a link ic we have a map

$$
\begin{aligned}
\partial: \mu & \rightarrow \mathcal{L} \\
S & \mapsto \partial S
\end{aligned}
$$

To count the minimal surfaces which fill a link $L \in \mathcal{L}$ we want to count number of points in $\partial^{-1}(L)$

We want to define the degree at $\partial$ !

generic links
in same isotopy class

In this picture $\operatorname{deg}(\partial)=1$
What has to be dove to make this work?

1) Want to talk about critical points of $\partial: \mu \rightarrow \mathcal{L}$

So we need $\mathcal{L}$ and $\mathcal{L}$ to have structure where we can talk about smooth maps

Theorem $M$ and $\mathcal{L}$ are Banach wanibolds (infinite dimensional!)

Also need $g$ to be a "nice" smooth map

Theorem $\partial$ is fredholen of degree $O$

Need to be able to define signs af points $m \quad \partial^{-1}(\rho)$

Theorem This can be done...

This is still not enough though.
Suppose $L$ is generic. How do we know $\partial^{-1}(L)$ is finite?
and is otopic
Suppose $L_{0}, L_{1}$ are generic $\mathcal{L}$. How do we know $\partial^{-1}\left(L_{0}\right)$ and $\partial^{-1}\left(L_{1}\right)$ have some number of points

Want to prove properness!
$S_{n} \in M$ an mhinite sequence of minimal surfaces
$L_{n}=\partial S_{n}$ their boundaries

Suppose $L_{n} \rightarrow L$
Want to prove (a subsequence of) the Sn converge to a minimal surtael $S$ with $\partial S=L$

Eg want to avoid this:

$\operatorname{dim} L_{n}$
$\ln S_{n}$ doesn't exist?

Until now we haven't talked about the topology of our minimal surfaces

Now it becomes important!

minimal disk billing an unkuat

minimal surface
ob genus 1 billing
a trefoil
"Genus" is "number af holes"


Theorem Let $M_{0}$ be the space of minimal disks (genus 0). The boundary map $\partial: M_{0} \rightarrow \infty$ is proper

This mean that we have a well defined Knot invariant
$N(K)=\#$ minimal disks $m H^{4}$ with boundary K Comet w/. sign and $K$ generic in isotopy class).

Big question: Is this a known knot invariant eg a coebticient in a knot polynomial?

And hor higher genus or mare boundary components?

Problem $\partial$ is not proper!

Beautiful example of this due to Tien Nguyen.

There is a path of minimal annuli which hill Hopi links:

$S_{0}, \partial S_{0}=H_{0}$

$S_{n}, \partial S_{n}=H_{n}$


$$
\begin{aligned}
& H_{n} \rightarrow H \\
& S_{n} \rightarrow S
\end{aligned}
$$

The limiting minimal surface is SINGULAR

It has a dibberent topology.
If we soul to count minimal annuli we reed to deal with this phenomenon.

And a skein relation?...

Need to understand what happens to the minimal furbaees when the boundary develops a crossing:


